数学Aの円で使う定理・性質の一覧
円周角の定理
弧ABに対する円周角の大きさはつねに一定であり、その角の大きさは、その弧に対する中心角の大きさの半分である。
・∠ACB=∠ADB
・∠AOB=2∠ACB=2∠ADB
また、次の図のように2つの円周角があったとき
・∠AEB=∠CFDであれば、その円周角に対する弧(ABとCD)の長さは等しい
・弧ABと弧CDの長さが等しければ、その弧に対する円周角の大きさは等しい(∠AEB=∠CFD)
接線の長さ
円Oの外にある任意の点Pから、円Oに2本の接線を引き、円との交点をそれぞれA、Bとする。このとき
PA=PBとなる。
※
円の接線の長さの証明
円に内接する四角形の性質
接弦定理
円の接線とその接点を通る弦とがなす角は、その角内にある孤に対する円周角に等しい
※
・接弦定理の証明(円周角が鋭角ver.)
※
・接弦定理の証明(円周角が直角ver.)
※
・接弦定理の証明(円周角が鈍角ver.)
方べきの定理
■方べきの定理 (1)
■方べきの定理 (2)