円に内接する四角形の性質
1:円に内接する四角形の対角の和は180°
2:四角形の内角は、その対角の外角に等しい
このテキストでは、これらの定理を証明します。
「円に内接する四角形の対角の和は180°」の証明
四角形ABCDが円Oに内接するとき、
∠BAD=α
∠BCD=β
とすると、
円の中心角は円周角の2倍の大きさにあたるので
∠BOD(赤)=2α
∠BOD(青)=2β
となる。すなわち
2α+2β=360°
この式の両辺を2で割ると
α+β=180° -①
以上のことから、「1:円に内接する四角形の対角の和は180°」が成り立つことが証明できた。
「四角形の内角は、その対角の外角に等しい」の証明
図をみると、∠BCDの外角の大きさは、
∠BCDの外角=180°-β -②
となる。①を変形すると
α=180°ーβ -③
②と③より、
∠BCDの外角=αとなることがわかる。
以上で、「2:四角形の内角(α)は、その対角(β)の外角に等しい」が成り立つことが証明できた。
証明おわり。