円の共有点を通る直線の方程式
・x²+y²=13 ー①
・x²+y²−4x−4y+7=0 ー②
この2つの円の共有点を通る直線の方程式を求めてみましょう。
テキスト
2つの円の共有点の座標を求める問題より、①と②は(2,3)と(3,2)で交わることがわかっているので、これをもとに図をかいてみます。
(2,3)と(3,2)を通る直線の傾きは、
つまり直線の方程式は、
y−3=−(x−2)
y=ーx+5 ー③
と求めることができます。
しかしこの方法で解くには共有点の座標がわかっていなければならず、それを求めるのに時間がかかってしまいます。実は、もっと簡単に直線の方程式を求める方法があります。
①−②をすれば良いのです。
実際に①−②をすると
4x+4y−7=13
4x+4y−20=0
x+y−5=0
y=−x+5
となり、先ほど求めた③と一致しましたね。