解と係数の関係
数学Ⅰで、
2次方程式の解と係数の関係について学習したかと思います。どういうものかというと、
2次方程式"ax²+bx+c=0"の2つの解を"α"と"β"としたとき、
というものでした。
この関係は、数学Ⅱで学習する虚数解が出る2次方程式でも成り立ちます。ということで、本当に成り立つか確かめてみましょう。
2次方程式の解と係数の関係の証明
2次方程式"2x²+3x+4=0"を用いて、解と係数の関係を証明せよ
"2x²+3x+4=0"を解いていきます。
解の公式を用いて
この方程式の解を"α"と"β"とすると
とおくことができます。(αとβが逆でもかまいません。)
αとβの値がわかったので、解と係数の関係の式が成り立つか計算してみましょう。
さて、
となったかを確認してみましょう。
"2x²+3x+4=0"において、a=2、b=3、c=4なので
"α+β=−3/2"ということは、"α+β=−a/b"が成り立っていると言えます。
そして
"αβ=2"ということは、"αβ=c/a"が成り立っていると言えます。
以上のことから、虚数解をもつ2次方程式でも
解と係数の関係は成り立つことがわかりました。