アポロニウスの円の証明
点の軌跡を求める問題
まずは次の問題を解いてみましょう。
座標上の2点A(0,0)とB(4,0)からの距離の比が3:1である点Pの軌跡を求めなさい
軌跡を求めるテクニックを用いて解いていきましょう。
まず、点Pの座標を(x,y)とします。
問題より、AP:BP=3:1なので、"AP=3BP"
両辺を2乗すると"AP²=9BP²" ー①
APとBPの関係式が求まったところで、APとBPの長さを求めていきます。
AP²=(x−0)²+(y−0)²=x²+y² ー②
PB²=(x−4)²+(y−0)²=(x−4)²+y² ー③
①に②と③を代入します。
x²+y²=3{(x−4)²+y²}
x²+y²=3(x²−8x+16)+3y²
x²+y²=3x²−24x+48+3y²
2x²−24x+48+2y²=0
x²−12x+24+y²=0
x²−12x+36−36+24+y²=0
(x−6)²+y²=12
(x−6)²+y²=(2√3)²
以上から、条件を満たす点Pは、(6,0)を中心とする半径2√3の円とわかりました。求めた円を図にかくと次のようになります。
アポロニウスの円
AP:BP=3:1となる点の集合は図示した円ですが、このとき、点QはABを3:1に内分し、点RはABを3:1に外分します。このような性質をもつ円のことを
アポロニウスの円といいます。
教科書には、「AP:BP=m:nを満たす点Pの軌跡は〜」のように書いてありますが、実際に数値をいれた方がイメージしやすいのではないかと思います。