練習問題1
"sinΘ+cosΘ=k"のとき、次の式の値をkを用いて表しなさい。
(1) sinΘcosΘ
(2) sin³Θ+cos³Θ
(1) sinΘcosΘ
"sinΘ+cosΘ=k"の両辺を2乗します。
(sinΘ+cosΘ)²=k²
sin²Θ+2sinΘcosΘ+cos²Θ=k² ー①
"sin²Θ+cos²Θ=1"より①式は、
1+2sinΘcosΘ=k²
2sinΘcosΘ=k²−1
(2) sin³Θ+cos³Θ
3次の式を因数分解する公式より、
sin³Θ+cos³Θ
=(sinΘ+cosΘ)(sin²Θ−sinΘcosΘ+cos²Θ) ー②
"sin²Θ+cos²Θ=1"
"sinΘ+cosΘ=k"
"sinΘcosΘ=(k²−1)/2"より②式は
練習問題2
"sinΘ−cosΘ=k"のとき、次の式の値をkを用いて表しなさい。
(1) sinΘcosΘ
(2) sin³Θ+cos³Θ
(1) sinΘcosΘ
"sinΘ−cosΘ=k"の両辺を2乗します。
(sinΘ−cosΘ)²=k²
sin²Θ−2sinΘcosΘ+cos²Θ=k² ー③
"sin²Θ+cos²Θ=1"より③式は、
1−2sinΘcosΘ=k²
2sinΘcosΘ=1−k²
(2) sin³Θ−cos³Θ
3次の式を因数分解する公式より、
sin³Θ−cos³Θ
=(sinΘ−cosΘ)(sin²Θ+sinΘcosΘ+cos²Θ) ー④
"sin²Θ+cos²Θ=1"
"sinΘ−cosΘ=k"
"sinΘcosΘ=(1−k²)/2"より④式は