|
|
|
更新日時:
|
|
![]() |
平均変化率の求め方・求める公式 |
著作名:
ふぇるまー
68,905 views |
平均変化率とは
微分について学習する前に、まず平均変化率について学習します。
平均変化率というと難しそうにきこえますが、実はもうすでに学習しています。中学生のときに学習した、直線の傾きを求める方法、覚えていますか?
試しに次の問題を解いてみましょう。
[問題]
2点(1,2)、(2,4)を通る直線の傾きを求めてみましょう。
2点(1,2)、(2,4)を通る直線の傾きを求めてみましょう。
与えられた2点(1,2)、(2,4)をみてみると、
・xの値が1から2に"1"だけ増加しました。
・yの値が2から4に"2"だけ増加しました。
つまり傾きは、
yの増加量÷xの増加量
で求めていますね。この式で求まる値のことを、微分の分野では平均変化率といいます。
練習問題
[問題]
2次関数f(x)=2x²について、
(1) xが1から2まで変化するときの平均変化率
(2) xが−2から0まで変化するときの平均変化率
そそれぞれ求めなさい。
2次関数f(x)=2x²について、
(1) xが1から2まで変化するときの平均変化率
(2) xが−2から0まで変化するときの平均変化率
そそれぞれ求めなさい。
■(1) xが1から2まで変化するときの平均変化率
先ほど、平均変化率は
yの増加量÷xの増加量
で求めるとかきましたが、この問題では"y"が"f(x)"となっています。難しく考えないようにしましょう。ただ"y"を"f(x)"に置き換えるだけです。
f(1)=2×1²=2
f(2)=2×2²=8
■(2) xが−2から0まで変化するときの平均変化率
f(−2)=2×(−2)²=8
f(0)=2×0²=0
このテキストを評価してください。
役に立った
|
う~ん・・・
|
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。 |
|
平均変化率の計算問題
>
極限値の計算法則
>
極限値とは
>
導関数の公式の証明y=f(x)−g(x)を微分するとy'=f'(x)−g'(x)
>
極限値の計算問題
>
最近見たテキスト
平均変化率の求め方・求める公式
10分前以内
|
>
|
デイリーランキング
数学II
- 式と証明
- 多項式の乗法と除法
- 分数式
- 恒等式/等式の証明
- 不等式の証明
- 二項定理
- 高次方程式
- 複素数
- 2次方程式(判別式/係数の関係/数の大小)
- 剰余の定理と因数定理
- 高次方程式
- 点と直線
- 点の距離
- 内分点/外分点
- 座標上の多角形
- 直線の方程式
- 垂直/平行な2直線
- 2直線の交点
- 点と直線の距離
- 円
- 円の方程式
- 円と直線の関係
- 円:軌跡の方程式
- 不等式の表す領域
- 指数関数と対数関数
- 指数と指数関数
- 対数と対数関数
- 三角関数
- 三角関数
- 加法定理/倍角の公式
- 微分
- 平均変化率・極限値
- 微分係数と導関数
- 微分:接線
- 微分:関数の増大と極大・極小
- 微分:最大値・最小値
- 微分:関数のグラフと方程式・不等式
- 積分
- 不定積分
- 定積分
- 積分:面積
- その他
- その他