manapedia
更新日時:
2次不等式の解き方
著作名: OKボーイ
110,595 views
はじめに

"x+3>0" や"x-6<0"のような式を1次不等式と言いました。
方程式に2次方程式があるのと同じように、不等式にも2次不等式と呼ばれる計算式があります。



2次不等式

x²>3
x²−4<0


2次不等式とは上記のようなものです。xが2乗になっているので2次不等式ですね。これがxの3乗であれば3次不等式などと呼びます。

解き方が1次不等式のそれとは勝手が違ってきますので、この解き方について説明しましょう。

2次不等式の解き方

x²−4<0

この問題を一緒に解いてみましょう。
まず、1次不等式の計算と同じように、左辺と右辺に同じ記号、同じタイプの数字を移項させます。

x²<4

この数式は、xの範囲は、2乗しても4より小さくなる数であることを意味しています。



正の数の範囲

例えば1は2乗しても4より小さくなるので、このxの範囲に含まれます。
では2はどうでしょうか?2は2乗すると4となるのでxの範囲には含まれません。
つまりxは2よりも小さい数 「x<2」であることがわかります。

負の数の範囲

一方で今度はマイナスの数を見なくてはなりません。
同じように、-1は2乗しても4より小さい数なのでxの範囲に含まれます。
では-2はどうでしょうか。−2は2乗すると4となるのでxの範囲には含まれません。

つまりxは-2よりも大きい数字 「-2<x」であることがわかります。

以上のことからxのとる範囲は、 「-2<x<2」 となります。

このように、 正の数と負の数の場合をそれぞれ考えなければいけないのが2次不等式の計算です。2次方程式の解き方と似ていますね。

このテキストを評価してください。
役に立った
う~ん・・・
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。






数学I