|
|
|
更新日時:
|
|
![]() |
2次関数のグラフとx軸との共有点の数を、判別式を使って求める |
著作名:
はっちゃん
167,233 views |
この単元では、
という問題がある。まず、共有点についてみてみよう。
まずはグラフの①、②、③をみてほしい。
①のグラフは、x軸と放物線が2箇所でまじわっている。これが、共有点が2つあるという状態だ。同じように②のグラフではx軸と放物線が1箇所でまじわっているので共有点が1つ、③ではまじわりがないので共有点はなしとなる。2次関数のグラフとx軸の共有点の数は2つ、1つ、なしの3パターンしかないことをまず覚えておこう。
では、どうやって共有点の数を求めていけばよいのか。一番簡単なのは、与えられた2次関数のグラフをかいてみることだ。必ず①、②、③のどれかのパターンに当てはまるので、一目でわかる。しかし、これだと時間がかかりすぎてしまうために、もっと便利な方法を紹介しよう。
2次関数y=ax²+bx+cがあるときに、b²-4acのことを判別式という。(b²-4ac=Dと表すこともある。)この判別式が0より大きいかどうかで共有点の数を調べることができる。
b²-4ac>0のときは共有点が2こ、b²-4ac=0のときは共有点が1こ、b²-4ac<0のときは共有点なしとなる。「b²-4acって何?」と思うかもしれないが、これは決まりごとなので覚えるしかない。それでも気になる場合は、理由を次のテキストに記したので見てもらいたい。
では早速、練習問題を通して判別式Dの使い方を身に着つけていこう。
判別式Dにあてはめると
D=b²-4ac=(-5)²-4×2×3=1>0
D>0なので、共有点の数は2ことなる。本当にそうか確認したい場合には、グラフを描いてみるとよい。
2次関数のグラフとx軸との共有点の数を求めよ
という問題がある。まず、共有点についてみてみよう。
共有点
まずはグラフの①、②、③をみてほしい。
①のグラフは、x軸と放物線が2箇所でまじわっている。これが、共有点が2つあるという状態だ。同じように②のグラフではx軸と放物線が1箇所でまじわっているので共有点が1つ、③ではまじわりがないので共有点はなしとなる。2次関数のグラフとx軸の共有点の数は2つ、1つ、なしの3パターンしかないことをまず覚えておこう。
共有点の数の求め方
では、どうやって共有点の数を求めていけばよいのか。一番簡単なのは、与えられた2次関数のグラフをかいてみることだ。必ず①、②、③のどれかのパターンに当てはまるので、一目でわかる。しかし、これだと時間がかかりすぎてしまうために、もっと便利な方法を紹介しよう。
判別式を使う
b²-4acが0より大きいかどうかで判断する
2次関数y=ax²+bx+cがあるときに、b²-4acのことを判別式という。(b²-4ac=Dと表すこともある。)この判別式が0より大きいかどうかで共有点の数を調べることができる。
b²-4ac>0のときは共有点が2こ、b²-4ac=0のときは共有点が1こ、b²-4ac<0のときは共有点なしとなる。「b²-4acって何?」と思うかもしれないが、これは決まりごとなので覚えるしかない。それでも気になる場合は、理由を次のテキストに記したので見てもらいたい。
では早速、練習問題を通して判別式Dの使い方を身に着つけていこう。
f(x)=2x²-5x+3とx軸との共有点の数を求めよ
判別式Dにあてはめると
D=b²-4ac=(-5)²-4×2×3=1>0
D>0なので、共有点の数は2ことなる。本当にそうか確認したい場合には、グラフを描いてみるとよい。
このテキストを評価してください。
役に立った
|
う~ん・・・
|
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。 |
|
なぜ判別式(b²-4ac)でx軸との共有点の数がわかるのか
>
x軸との交点の座標の求め方
>
グラフを使った1次不等式の解き方
>
2次関数[y=a(x-p)²+qのグラフの書き方・グラフの平行移動]
>
2次関数"y=2x²+4x-m"がx軸と異なる2点で交わるときのmの範囲を求める問題
>
2次関数のグラフの平行移動[y=ax²+bx+cをどう移動するとy=a'x²+b'x+c'となるか]
>
最近見たテキスト
2次関数のグラフとx軸との共有点の数を、判別式を使って求める
10分前以内
|
>
|