更新日時:
|
|
座標上における2点間の距離 |
|
著作名:
OKボーイ
50,193 views |
上図のような点A(x1,y1)、点B(x2,y2)の2点間の距離を求めよという問題があったとします。このとき、ABの距離の求め方は
という公式で求めることができます。
今回はなぜこの公式で求めることができるのかを証明したいと思います。
まず、考えやすくするために与えられた座標に補助線をひきます。
点A、点Bからそれぞれx軸、y軸に垂直、平行になるような補助得線をひきます。そして、点Aからx軸に平行にひいた線と、点Bからx軸に垂直にひいた線の交点をC(x2,y1)とします。このとき三角形ABCにおいて、∠ACB=90°
であることが言えますね。
つまりABは直角三角形ABCにおける斜辺ということになります。
あれ?直角三角形の斜辺を求める公式って何かありませんでしたっけ?
そうです、三平方の定理(ピタゴラスの定理)です。
というやつですね。
この定理にあてはめてABの長さを求めます。
ですので、(絶対値をつけるのは、点A、点Bが必ずしも第1象限にあるとは限らないからです。)これを三平方の定理に当てはめて
ここでAB>0であることから
が求められます。
公式が証明できましたね。この2点間を求める問題は、今後応用も含めてたくさんでてきますので、しっかりと頭の中にいれておくようにしてくださいね。
このテキストを評価してください。
役に立った
|
う~ん・・・
|
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。 |
|
点と直線の距離(原点以外の点)
>
点と直線の距離を求める公式とその証明
>
任意定数をもつ直線について考える
>
点と直線の距離(原点から直線の場合)
>
直線に関して対称な点の座標を求める問題
>
最近見たテキスト
座標上における2点間の距離
10分前以内
|
>
|
デイリーランキング
注目テキスト
数学II
- 式と証明
- 多項式の乗法と除法
- 分数式
- 恒等式/等式の証明
- 不等式の証明
- 二項定理
- 高次方程式
- 複素数
- 2次方程式(判別式/係数の関係/数の大小)
- 剰余の定理と因数定理
- 高次方程式
- 点と直線
- 点の距離
- 内分点/外分点
- 座標上の多角形
- 直線の方程式
- 垂直/平行な2直線
- 2直線の交点
- 点と直線の距離
- 円
- 円の方程式
- 円と直線の関係
- 円:軌跡の方程式
- 不等式の表す領域
- 指数関数と対数関数
- 指数と指数関数
- 対数と対数関数
- 三角関数
- 三角関数
- 加法定理/倍角の公式
- 微分
- 平均変化率・極限値
- 微分係数と導関数
- 微分:接線
- 微分:関数の増大と極大・極小
- 微分:最大値・最小値
- 微分:関数のグラフと方程式・不等式
- 積分
- 不定積分
- 定積分
- 積分:面積
- その他
- その他