更新日時:
|
|
虚数解を持つ2次方程式における「解と係数の関係」 |
|
著作名:
ふぇるまー
42,118 views |
数学Ⅰで、2次方程式の解と係数の関係について学習したかと思います。どういうものかというと、
2次方程式"ax²+bx+c=0"の2つの解を"α"と"β"としたとき、
というものでした。
この関係は、数学Ⅱで学習する虚数解が出る2次方程式でも成り立ちます。ということで、本当に成り立つか確かめてみましょう。
2次方程式"2x²+3x+4=0"を用いて、解と係数の関係を証明せよ
"2x²+3x+4=0"を解いていきます。
解の公式を用いて
この方程式の解を"α"と"β"とすると
とおくことができます。(αとβが逆でもかまいません。)
αとβの値がわかったので、解と係数の関係の式が成り立つか計算してみましょう。
さて、
となったかを確認してみましょう。
"2x²+3x+4=0"において、a=2、b=3、c=4なので
"α+β=−3/2"ということは、"α+β=−a/b"が成り立っていると言えます。
そして"αβ=2"ということは、"αβ=c/a"が成り立っていると言えます。
以上のことから、虚数解をもつ2次方程式でも解と係数の関係は成り立つことがわかりました。
このテキストを評価してください。
役に立った
|
う~ん・・・
|
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。 |
|
解と係数の関係を用いた練習問題[虚数解をもつ2次方程式ver.]
>
解の判別[2次方程式"x²+mx+m+2=0"が異なる2つの虚数解をもつときのmの範囲を求める問題]
>
2次方程式の実数解の符号
>
複素数を解に含む2次方程式の解き方
>
複素数の範囲で2次式を因数分解する問題
>
虚数解をもつ2次方程式の解の判別[判別式"D"と解の個数を求める問題]
>
最近見たテキスト
虚数解を持つ2次方程式における「解と係数の関係」
10分前以内
|
>
|
デイリーランキング
注目テキスト
数学II
- 式と証明
- 多項式の乗法と除法
- 分数式
- 恒等式/等式の証明
- 不等式の証明
- 二項定理
- 高次方程式
- 複素数
- 2次方程式(判別式/係数の関係/数の大小)
- 剰余の定理と因数定理
- 高次方程式
- 点と直線
- 点の距離
- 内分点/外分点
- 座標上の多角形
- 直線の方程式
- 垂直/平行な2直線
- 2直線の交点
- 点と直線の距離
- 円
- 円の方程式
- 円と直線の関係
- 円:軌跡の方程式
- 不等式の表す領域
- 指数関数と対数関数
- 指数と指数関数
- 対数と対数関数
- 三角関数
- 三角関数
- 加法定理/倍角の公式
- 微分
- 平均変化率・極限値
- 微分係数と導関数
- 微分:接線
- 微分:関数の増大と極大・極小
- 微分:最大値・最小値
- 微分:関数のグラフと方程式・不等式
- 積分
- 不定積分
- 定積分
- 積分:面積
- その他
- その他