manapedia
更新日時:
2次不等式の解き方[(x−α)²≧0、(x−α)²≦0の形をした問題]
著作名: ふぇるまー
11,861 views
(x−α)²≧0の形をした2次不等式

"ax²+bx+c≧0"を変形して、"(x−α)²≧0"とできるタイプの2次不等式の解き方についてみていきます。まずは次のことを覚えましょう。

"ax²+bx+c=0の解がαのみのとき(重解)
・"ax²+bx+c≧0"の解は、すべての実数
・"ax²+bx+c≦0"の解は、x=α

※">","<"の場合とは答えがかわってくることに注意が必要です。

実際に問題を解きながら確認してみましょう。
問題 次の2次不等式を解きなさい
(1) x²+2x+1≧0
(2) x²+2x+1≦0


(1) x²+2x+1≧0

まず、"x²+2x+1=0"として、この2次方程式の解をもとめます。

x²+2x+1=0
(x+1)²=0
x=−1

先ほどの決まり事に従うと、"x²+2x+1≧0"の解は、「すべての実数」となりますが、これだとイメージがしにくいので、"y=x²+2x+1"のグラフをかいて確認してみましょう。

ALT


"y=x²+2x+1"のグラフは、頂点がx軸上にある(x軸と接する)放物線を描きます。つまり、"x=−1"のときに、"y=0"となるわけですね。

グラフから、xがどのような値をとっても"y≧0"となることが読み取れるはずです。つまり解は、「すべての実数」となります。

(4) x²+2x+1≦0

続いて、"x²+2x+1≦0"の場合です。
グラフより、"y≦0"となるのは、"y=0"(x=−1)が成り立つときだけです。つまり解は、「x=−1」となります。

このテキストを評価してください。
役に立った
う~ん・・・
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。






数学I