manapedia
更新日時:
2次不等式の解き方~実践問題~
著作名: OKボーイ
114,558 views
実践

ここでは、実際に2次不等式の問題を解いてみましょう。
解法は下にありますので、まずは自分で解いてみて、解けたら答え合わせをしてください。



(1)(x−4)(x+2)<0
(2)x(x−3)>0
(3)x²−3x+2>0
(4)x²−9≦0

(1)(x−4)(x+2)<0

(xーα)(x-β)<0のとき α<x<β (α<β)でしたので
(x-4)(x+2)<0の解は、-2<x<4 となります。

(2)x(x−3)>0

この式は、(xー0)(x-3)>0 と解釈して計算します。
すると(xーα)(x-β)>0のとき x<α、x<β (α<β)でしたので
x(x-3)>0の解は、 x<0、3<x となります。



(3)x²−3x+2>0

まず左辺を因数分解しましょう。
左辺=(x-1)(x-2)>0 となります。
2と同様に、 x<1、2<x が解となります。

(4)x²−9≦0

同じように左辺を因数分解しましょう。
左辺=(x+3)(x-3)≦0 となります。
1と同様に、 -3≦x≦3 が解となります。
因数分解できるものは因数分解してから解き始める


このテキストを評価してください。
役に立った
う~ん・・・
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。






数学I