|
|
|
更新日時:
|
|
![]() |
三角関数の相互関係による式の値を求める問題 |
著作名:
ふぇるまー
20,482 views |
練習問題1
"sinΘ+cosΘ=k"のとき、次の式の値をkを用いて表しなさい。
(1) sinΘcosΘ
(2) sin³Θ+cos³Θ
(1) sinΘcosΘ
(2) sin³Θ+cos³Θ
(1) sinΘcosΘ
"sinΘ+cosΘ=k"の両辺を2乗します。
(sinΘ+cosΘ)²=k²
sin²Θ+2sinΘcosΘ+cos²Θ=k² ー①
"sin²Θ+cos²Θ=1"より①式は、
1+2sinΘcosΘ=k²
2sinΘcosΘ=k²−1
(2) sin³Θ+cos³Θ
3次の式を因数分解する公式より、
sin³Θ+cos³Θ
=(sinΘ+cosΘ)(sin²Θ−sinΘcosΘ+cos²Θ) ー②
"sin²Θ+cos²Θ=1"
"sinΘ+cosΘ=k"
"sinΘcosΘ=(k²−1)/2"より②式は
練習問題2
"sinΘ−cosΘ=k"のとき、次の式の値をkを用いて表しなさい。
(1) sinΘcosΘ
(2) sin³Θ+cos³Θ
(1) sinΘcosΘ
(2) sin³Θ+cos³Θ
(1) sinΘcosΘ
"sinΘ−cosΘ=k"の両辺を2乗します。
(sinΘ−cosΘ)²=k²
sin²Θ−2sinΘcosΘ+cos²Θ=k² ー③
"sin²Θ+cos²Θ=1"より③式は、
1−2sinΘcosΘ=k²
2sinΘcosΘ=1−k²
(2) sin³Θ−cos³Θ
3次の式を因数分解する公式より、
sin³Θ−cos³Θ
=(sinΘ−cosΘ)(sin²Θ+sinΘcosΘ+cos²Θ) ー④
"sin²Θ+cos²Θ=1"
"sinΘ−cosΘ=k"
"sinΘcosΘ=(1−k²)/2"より④式は
このテキストを評価してください。
役に立った
|
う~ん・・・
|
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。 |
|
三角関数tanθを含む方程式の計算問題
>
三角関数の性質[θ+2nπの公式]
>
三角関数の性質[π/2-θの公式の証明]
>
三角関数の相互関係の公式を用いた等式の証明[tanΘ+1/tanΘ=1/sinΘcosΘ]
>
三角関数の公式
>
最近見たテキスト
三角関数の相互関係による式の値を求める問題
10分前以内
|
>
|
デイリーランキング
数学II
- 式と証明
- 多項式の乗法と除法
- 分数式
- 恒等式/等式の証明
- 不等式の証明
- 二項定理
- 高次方程式
- 複素数
- 2次方程式(判別式/係数の関係/数の大小)
- 剰余の定理と因数定理
- 高次方程式
- 点と直線
- 点の距離
- 内分点/外分点
- 座標上の多角形
- 直線の方程式
- 垂直/平行な2直線
- 2直線の交点
- 点と直線の距離
- 円
- 円の方程式
- 円と直線の関係
- 円:軌跡の方程式
- 不等式の表す領域
- 指数関数と対数関数
- 指数と指数関数
- 対数と対数関数
- 三角関数
- 三角関数
- 加法定理/倍角の公式
- 微分
- 平均変化率・極限値
- 微分係数と導関数
- 微分:接線
- 微分:関数の増大と極大・極小
- 微分:最大値・最小値
- 微分:関数のグラフと方程式・不等式
- 積分
- 不定積分
- 定積分
- 積分:面積
- その他
- その他