manapedia
更新日時:
平均値の定理をよりわかりやすく
著作名: OKボーイ
113,296 views
平均値の定理をわかりやすく噛み砕いて解説

このテキストでは、微分法において最も重要な定理と言っても過言ではない平均値の定理をよりわかりやすく、噛み砕いて解説してみます。



平均値の定理

平均値の定理とは次のような定理でした。

関数f=f(x)は、閉区間[a、b]で連続、開区間(a、b)で微分可能であるとします。このとき、以下の式を満たすを満たす実数「c」が存在する。

※ (a<c<b)


ALT






これが平均値の定理なのですが、いまいちわかりにくい。。。
もう少しわかりやすく説明してみましょう。

説明

まず、閉区間[a、b]と開区間(a、b)の意味はきちんと把握できていますか?

閉区間[a、b]={x|a≦x≦b}
開区間(a、b)={x|a<x<b}

です。これがわかったところでようやく本題です。



関数y=f(x)が次の図のような曲線を描いているとします。
ALT


曲線の端の点、A(a、f(a))とB(b、f(b))を結ぶ線分の傾きは、

ALT


で表されます。

この傾きと、曲線のx=cにおける接線の傾きf’(c)とが等しくなる点C(c、f(c))が曲線AB間に存在している。

すなわち
ALT

を満たす点C(c、f(c))が存在している。

これが平均値の定理です。

このテキストを評価してください。
役に立った
う~ん・・・
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。






数学III