|
|
|
更新日時:
|
|
![]() |
接線の方程式の求め方~数学Ⅱの復習~ |
著作名:
OKボーイ
18,896 views |
接線の傾き
関数y=f(x)があったとき、点A(a、f(a))における接線の傾きは「f’(a)」で求めることができました。このことから、点Aにおける接線の方程式は次のように表すことができます。
y-a=f’(a)(x-a)
ではこのことを使って、次の問題を解いてみましょう。
このことから、点Bにおける接線の方程式は
数学Ⅱで学習した内容ですね。
忘れていた人は今一度数学Ⅱに戻って確認をしておきましょう。
このテキストを評価してください。
役に立った
|
う~ん・・・
|
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。 |
|
接線と法線の関係
>
最近見たテキスト
接線の方程式の求め方~数学Ⅱの復習~
10分前以内
|
>
|
デイリーランキング
注目テキスト
数学III
- 平面上の曲線と複素数平面
- 平面上の曲線/媒介変数など
- 複素数平面
- 数列とその極限
- 数列の極限
- 無限等比数列
- 無限級数
- 関数とその極限
- 分数関数と無理関数
- 合成関数と逆関数
- 関数値の極限
- 微分法
- 微分係数と導関数
- 関数の和・差・積・商の導関数
- 合成関数の導関数
- 三角関数・指数関数・対数関数の導関数
- 高次導関数など
- 微分法:接線と法線
- 微分法:関数値の変化・最大最小
- 微分法:関数のグラフ
- 微分法:速度と加速度
- 微分法:近似値
- 積分法
- 不定積分と定積分の基本性質
- 置換積分法/部分積分法/区間求積法など
- 積分の応用(面積/体積/曲線の長さ)
- その他
- その他