更新日時:
|
|
分数式の解き方[分数式の約分] |
|
著作名:
ふぇるまー
95,205 views |
"1/2"や"3/4"のような値を分数といいましたね。ここでは
のような、「整式/整式」の形をした値をみていきます。
2つの整式AとBがあるとき、「A/B」の形で表され、分母に文字が含まれる式のことを分数式といいます。
難しそうと思うかもしれませんが、これまで学習してきた分数と仕組みは同じです。
まずは約分のしかたを覚えましょう。
この分数を約分すると
となります。分子と分母を共通の因数である3で割った形ですね。
同じように分数式でも、分母と分子に共通の値があれば約分できます。では、
これを約分してみます。数字は数字で、文字は同じ文字で約分を行います。
先ほどは分子と分母が単項式(項が1つ)の分数式について説明しました。
今度は、
のように、分子と分母が多項式の場合(項が複数ある)についてです。
約分は、かけ算の式でしかできないということを覚えておきましょう。
ということは、足し算と引き算で成り立っている
は、このままでは約分できないことになります。
こんなときは、式を因数分解してから約分することを覚えておきましょう。
の分子と分母を因数分解すると
これでかけ算の式となりました。
分子と分母の共通因数である(x+1)で分子と分母を割ると、
因数分解をしてから約分する
このテキストを評価してください。
役に立った
|
う~ん・・・
|
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。 |
|
分母に分数を含む分数式の計算
>
分子と分母に分数を含む式の計算[分数式]
>
分数式の減法・通分[分数式の四則計算]
>
分数式の乗法[分数式の四則計算]
>
分数式の掛け算・割り算
>
最近見たテキスト
分数式の解き方[分数式の約分]
10分前以内
|
>
|
注目テキスト
数学II
- 式と証明
- 多項式の乗法と除法
- 分数式
- 恒等式/等式の証明
- 不等式の証明
- 二項定理
- 高次方程式
- 複素数
- 2次方程式(判別式/係数の関係/数の大小)
- 剰余の定理と因数定理
- 高次方程式
- 点と直線
- 点の距離
- 内分点/外分点
- 座標上の多角形
- 直線の方程式
- 垂直/平行な2直線
- 2直線の交点
- 点と直線の距離
- 円
- 円の方程式
- 円と直線の関係
- 円:軌跡の方程式
- 不等式の表す領域
- 指数関数と対数関数
- 指数と指数関数
- 対数と対数関数
- 三角関数
- 三角関数
- 加法定理/倍角の公式
- 微分
- 平均変化率・極限値
- 微分係数と導関数
- 微分:接線
- 微分:関数の増大と極大・極小
- 微分:最大値・最小値
- 微分:関数のグラフと方程式・不等式
- 積分
- 不定積分
- 定積分
- 積分:面積
- その他
- その他