更新日時:
|
|
最大最小値を使って箱の体積を求める |
|
著作名:
OKボーイ
25,429 views |
「微分の最大最小値っていったい何の役にたつの!?」と思われるかもしれませんが、次のような問題に応用できます。
図のように1辺が6cmの正方形の4隅から、合同な正方形を切り取ってふたのない箱を作ります。このとき箱の容量を最大にするには切り取る正方形の1辺を何cmにしたらよいでしょうか
このような場合にも微分の考え方が役に立ちます。
まず、切り取る正方形の1辺をxcm、箱の容積をVとすると次の式が成り立ちます。
ここで、xの範囲について考えてみましょう。
箱の1辺はプラスでなければなりませんので、当然x>0です。
そしてもう1つ、6-2xもまたプラスでなければなりませんね。
6-2x>0 整理してx<3
よってxの範囲は、0<x<3 でなければなりません。
ここで微分が登場です。
Vをxで微分すると
とすると、x=1、3が導き出せます。
ここで増減表を作ってみましょう。
増減表よりx=1のときにVは極大値であり最大値16をとりますね。
このように、微分を使った最大最小値は応用ができます。
このテキストを評価してください。
役に立った
|
う~ん・・・
|
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。 |
|
最大最小値を使って円錐の体積を求める
>
最大値と最小値
>
最大最小値を使って円錐の体積を求める
>
3次関数の最大値と最小値の求め方(極大値と極小値の違い)
>
最近見たテキスト
最大最小値を使って箱の体積を求める
10分前以内
|
>
|
数学II
- 式と証明
- 多項式の乗法と除法
- 分数式
- 恒等式/等式の証明
- 不等式の証明
- 二項定理
- 高次方程式
- 複素数
- 2次方程式(判別式/係数の関係/数の大小)
- 剰余の定理と因数定理
- 高次方程式
- 点と直線
- 点の距離
- 内分点/外分点
- 座標上の多角形
- 直線の方程式
- 垂直/平行な2直線
- 2直線の交点
- 点と直線の距離
- 円
- 円の方程式
- 円と直線の関係
- 円:軌跡の方程式
- 不等式の表す領域
- 指数関数と対数関数
- 指数と指数関数
- 対数と対数関数
- 三角関数
- 三角関数
- 加法定理/倍角の公式
- 微分
- 平均変化率・極限値
- 微分係数と導関数
- 微分:接線
- 微分:関数の増大と極大・極小
- 微分:最大値・最小値
- 微分:関数のグラフと方程式・不等式
- 積分
- 不定積分
- 定積分
- 積分:面積
- その他
- その他