新規登録 ログイン
検索条件
タグ 指数

1

2

3

4

14_80
Text_level_1
底の変換公式 問題1 次の式を計算しなさい。 \log _{2} 12- \log _{4} 36 この式は、2つの項の底の値が異なるので、底の値をそろえて計算しなければなりません。そこで使うの... (全て読む)
14_80
Text_level_3
対数の計算 次の3つの 対数の公式が頭に入っている状態でこのテキストは読んでください。 a>0、a≠1、M>0のとき <公式1> \log _{a} MN= \log _{a} M+ \log ... (全て読む)
14_80
Text_level_1
指数の大小比較 ここでは、指数の大小比較の中でも、底をそろえることができない場合の問題についてみていきます。指数の大小比較を学習するのが初めての人は、 わかりやすい指数・累乗根の大小の比較[底を... (全て読む)
14_80
Text_level_1
指数の大小比較 "³√3"と"⁷√27" の大きさを不等号を用いて表しなさい。 要するに。どちらが大きいか調べなさいという問題です。"指数の大小比較"と教科書では書いてありますが、この手の問題は... (全て読む)
14_80
Text_level_1
底の変換公式 ここでは、 対数の分野で使う公式の1つ、底の変換公式の証明をしていきます。底の変換公式とは、 a、b、cが正の数でa≠1、b≠1、c≠1のとき \log _{a} b= \frac... (全て読む)
14_80
Text_level_1
対数の性質 logを含んだ式を計算するために覚えておく公式が3つありました。 ここではそのうちの1つ、 a>0、a≠1、M>0のとき \log _{a} M ^{n} =n \log _{a} ... (全て読む)
14_80
Text_level_1
対数の性質 logを含んだ式を計算するために覚えておく公式が3つありました。 ここではそのうちの1つ、 a>0、a≠1、M>0のとき \log _{a} \frac{M}{N} = \log _... (全て読む)
14_80
Text_level_1
対数の性質 logを含んだ式を計算するために覚えておく公式が3つありました。 ここではそのうちの1つ、 a>0、a≠1、M>0のとき \log _{a} MN= \log _{a} M+ \lo... (全て読む)
14_80
Text_level_1
指数を対数の形に変形する問題 前回のテキストでは、 "log₂8=3"は、「2を3乗したら8になる」という意味なので、この式は"2³=8"と同じ意味である ことを説明しました。今回は、logを含... (全て読む)
14_80
Text_level_1
対数 新しく対数について勉強します。教科書には、 a>0、a≠1、M>0のとき \log _{a} M=p \Leftrightarrow a ^{p} =M と書いてあるかと思いますが、これだ... (全て読む)

1

2

3

4