新規登録 ログイン
検索条件
科目 数学III
タグ

1

2

3

4

16_80
Text_level_1
無限数列 項がどこまでも限りなく続く数列 a _{1} ,a _{2} ,a _{3} \cdots a _{n} のことを、無限数列と言います。数学Ⅲで扱う数列のことは、特にことわりが無い限り... (全て読む)
16_80
Text_level_1
不定積分 関数f(x)に対して、微分するとf'(x)になる関数、つまり F'(x)=f(x)となる関数F(x)のことを、f(x)の不定積分、または原始関数と言います。 例えば、 \acute{x... (全て読む)
16_80
Text_level_1
はじめに ここでは、導関数同士を四則計算させたときにどのような計算をするのかについてまとめています。 計算法則 2つの関数f(x)とg(x)があり、どちらも微分可能であるとき次の計算法則が成り立... (全て読む)
16_80
Text_level_1
無理関数 y= \sqrt{x}  …① y= \sqrt{2x-1}  …② このように、yについて無理式で表された関数をxの無理関数と言います。ここでは無理関数のグラフの描き方について説明し... (全て読む)
16_80
Text_level_1
平面上を移動する点の速度と加速度 平面上を移動する点Aの、時刻tにおける座標を(x、y)とします。このとき点Aにおいて、 時刻tにおける速度  \vec{v}  その大きさを| \vec{v} ... (全て読む)
16_80
Text_level_1
法線とは y=f(x)という関数において、点A(a、f(a))があったとします。 このとき、この点Aにおける接線と垂直に交わる直線のことを法線と言います。 法線の傾きと方程式 この法線をlとし、... (全て読む)
16_80
Text_level_1
合成関数の導関数の公式 y= \left(x ^{2} -2x+4\right) ^{2} このような関数は、 u=x ^{2} -2x+4 とおくと y=u ^{2} u=x ^{2} -2x... (全て読む)
16_80
Text_level_1
問題 θ=15°のとき、\frac {\left(cos \theta+isin \theta \right)\left(cos 7\theta+sin 7\theta \right)}{cos... (全て読む)
16_80
Text_level_1
はじめに 数列の極限と同じように関数にもまた、極限という考え方が存在します。 まずは極限の収束についてみていきましょう。 極限への収束 関数f \left(x\right) =x ^{2}  に... (全て読む)
16_80
Text_level_1
はじめに 指数関数の微分法で、次の公式が成り立つことを学習したと思います。 \acute{\left(e ^{x} \right)} =e ^{x} \acute{\left(a ^{x} \r... (全て読む)

1

2

3

4


知りたいことを検索!

 数学III
 平面上の曲線と複素数平面
   平面上の曲線/媒介変数など
   複素数平面
 数列とその極限
   数列の極限
   無限等比数列
   無限級数
 関数とその極限
   分数関数と無理関数
   合成関数と逆関数
   関数値の極限
 微分法
   微分係数と導関数
   関数の和・差・積・商の導関数
   合成関数の導関数
   三角関数・指数関数・対数関数の導関数
   高次導関数など
   微分法:接線と法線
   微分法:関数値の変化・最大最小
   微分法:関数のグラフ
   微分法:速度と加速度
   微分法:近似値
 積分法
   不定積分と定積分の基本性質
   置換積分法/部分積分法/区間求積法など
   積分の応用(面積/体積/曲線の長さ)
 その他
   その他