manapedia
文字を含む4次方程式の実数解の個数の求め方
著作名: ふぇるまー
10,859 views
マナペディア(manapedia)とは、中学校・高等学校で勉強する科目に特化した、マナビを共有し合う場です。たくさんのテキストの中からあなたにあったマナビを探したり、あなたが学習・勉強してきたマナビを形に残したりすることができます。テキストの内容に関しては、他の参考文献をご覧になり、ご自身の責任のもとご判断・ご利用頂きますようお願い致します。

4次方程式の異なる実数解の個数

aは定数とする。
"3x⁴−4x³−12x²+6x+2=6x+a"の異なる実数解の個数を調べなさい。


文字があるときの3次方程式の実数解の個数の求め方が解けたら、今度は、文字を含む4次方程式の実数解の個数を求める問題にチャレンジしてみましょう。

解き方は3次方程式のときと同じなので、不安な人は、3次方程式の問題が解けるようになってからチャレンジしてください。

ステップ1

"3x⁴−4x³−12x²+6x+2=6x+a"を変形します。

3x⁴−4x³−12x²+6x−6x+2=a
3x⁴−4x³−12x²+2=a

ステップ2

右辺のaのことはとりあえずおいておいて、

f(x)=3x⁴−4x³−12x²+2

としてグラフを書きます。

f'(x)
=12x³−12x²−24x
=12x(x²ーx−2)
=12(x−2)(x+1)

なので、増減表は次のようになります。

ALT


増減表よりグラフは

ALT


ステップ3

続いて右辺"a"について考えていきます。
"y=a"として、作成したグラフにかぶせるんでしたね。

ALT


グラフをみると

2>aまたは−30<a<−3のときに、交点が2こ
a=2、−3、−30のときに、交点が3こ
−3<a<2のときに、交点が4こ
a<−30のときに、交点が0こ

ということがわかります。この交点の数が、そのまま方程式の実数解の個数になるんでしたね。

以上から、方程式"3x⁴−4x³−12x²+6x+2=6x+a"の実数解の数は、

・2>aまたは−30<a<−3のときに、2こ
・a=2、−3、−30のときに、3こ
・−3<a<2のときに、4こ
・a<−30のときに、0こ

となります。


このテキストを評価してください。
役に立った
う~ん・・・
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。






数学II