manapedia
y=ax²+bx+cのグラフの描き方(頂点が原点を通らない2次関数のグラフ)
著作名: はっちゃん
13,399 views
マナペディア(manapedia)とは、中学校・高等学校で勉強する科目に特化した、マナビを共有し合う場です。たくさんのテキストの中からあなたにあったマナビを探したり、あなたが学習・勉強してきたマナビを形に残したりすることができます。テキストの内容に関しては、他の参考文献をご覧になり、ご自身の責任のもとご判断・ご利用頂きますようお願い致します。

y=2x²のようにグラフの頂点が原点(0、0)を通るグラフの描き方については中学校で学習をしてきた。では、次の2次関数はどうだろうか。

y=x²+2x-4

どうやってもy=ax²の形にすることはできない。つまりグラフの頂点が原点を通らないということになる。ここでは頂点が原点を通らない2次関数のグラフについてみていく。

y=a(x+p)²+qの形に変形をする

まずは与えられた式をy=a(x+p)²+qの形に変形する。この作業はグラフを描く上で必ず必要なのでさっと変形ができるようにしておきたい。

y=x²+2x-4

を変形していくと、y=(x+1)²-5となるわけだが、ここから新たに1つ覚えなければならない。

y=a(x+p)²+qのという2次関数があるとき、この関数のグラフは(-p、q)を頂点とする放物線を描く。


ちなみにy=a(x-p)²+qであれば頂点は(p、q)となる。ポイントはカッコの中が+pならば頂点のx座標はマイナスp、カッコの中が-pならば頂点のx座標はプラスとなる点である。
このことからy=(x+1)²-5のグラフは、(-1、-5)を頂点とする下に凸の放物線を描くことがわかる。

これをグラフに描くと次のようになる。
ALT


頂点の座標はもちろんのこと、グラフとy軸が交わる点も記すようにしておくとよい。今回は、グラフは(0、-4)のときにy軸と交わる。

このテキストを評価してください。
役に立った
う~ん・・・
※テキストの内容に関しては、ご自身の責任のもとご判断頂きますようお願い致します。






数学I