新規登録 ログイン
検索条件
タグ 微分

1

2

3

4

14_80
Text_level_1
導関数とは 関数f(x)において 極限\lim_{h \to 0} \frac{f(x+h)-f(h)}{h} が存在するとき これを関数f(x)の導関数であると言います。そして \acute{... (全て読む)
14_80
Text_level_1
不定積分 関数f(x)に対して、微分するとf'(x)になる関数、つまり F'(x)=f(x)となる関数F(x)のことを、f(x)の不定積分と言います。 例えば、 \acute{x^{2}}=2x... (全て読む)
14_80
Text_level_1
導関数を求める 関数"f(x)"を微分して導関数"f'(x)"を求める問題をみていきましょう。 この手の問題は、次のように出題されます。 次の関数を微分しなさい。 (1) f(x)=x²+4x−... (全て読む)
14_80
Text_level_1
導関数の計算法則 関数f(x)とg(x)の導関数、f'(x)とg'(x)が存在する時、次の計算法則が成り立ちます。 {f(x)+g(x)}'=f'(x)+g'(x) …① {kf(x)}'k=f... (全て読む)
16_80
Text_level_1
第2次導関数とは 関数「y=f(x)」の導関数は、「y’=f’(x)」ですよね。 このy’=f’(x)がさらにxでの微分が可能であるとします。(つまり、一度微分して求めた導関数をさらに微分すると... (全て読む)
14_80
Text_level_1
直線の傾きを求めること ※このテキストは中学生の皆さんを想定して書いていますので高校生の方には物足りない部分があると思われます。ご了承ください。 「微分」という言葉を辞書で引くと、「導関数を求め... (全て読む)
16_80
Text_level_1
接線の傾き 関数y=f(x)があったとき、点A(a、f(a))における接線の傾きは「f’(a)」で求めることができました。このことから、点Aにおける接線の方程式は次のように表すことができます。 ... (全て読む)
14_80
Text_level_2
箱の体積を求める 「微分の最大最小値っていったい何の役にたつの!?」と思われるかもしれませんが、次のような問題に応用できます。 図のように1辺が6cmの正方形の4隅から、合同な正方形を切り取って... (全て読む)
14_80
Text_level_2
3次方程式の異なる実数解の個数 aは定数とする。 "x³−3x²−a=0"の異なる実数解の個数を調べなさい。 3次方程式の異なる実数解の数を求める問題をレベルアップした問題ですが、試験には圧倒的... (全て読む)
14_80
Text_level_1
y'、f'(x)以外の導関数の表し方 "y=f(x)"を微分した導関数を、"y'=f'(x)"と表してきましたが、これ以外にも、導関数を表す方法があります。 その1 \frac{dy}{dx} ... (全て読む)

1

2

3

4