新規登録 ログイン
検索条件
科目 数学III
タグ

1

2

3

4

16_80
Text_level_1
無限級数が収束する条件 以下のような無限数列があるとします。 a _{1} ,a _{2} ,a _{3} ,a _{4} \cdots a _{n} \cdots この無限数列の和である無限級... (全て読む)
16_80
Text_level_1
第2次導関数とは 関数「y=f(x)」の導関数は、「y’=f’(x)」ですよね。 このy’=f’(x)がさらにxでの微分が可能であるとします。(つまり、一度微分して求めた導関数をさらに微分すると... (全て読む)
16_80
Text_level_1
はじめに 指数関数の微分法で、次の公式が成り立つことを学習したと思います。 \acute{\left(e ^{x} \right)} =e ^{x} \acute{\left(a ^{x} \r... (全て読む)
16_80
Text_level_1
関数f(x)が閉区間[a、b]において連続で、開区間(a、b)において微分可能であるとします。このとき 開区間(a、b)においてつねにf’(x)=0ならば、f(x)は閉区間[a、b]で定数をとり... (全て読む)
16_80
Text_level_1
原点から点Aまでの距離 複素数ではない平面座標を思い出してみましょう。 原点から点A(x,y)までの距離はどのようにして求められたでしょうか。 \sqrt{x ^{2} +y ^{2} }  だ... (全て読む)
16_80
Text_level_1
はじめに ここでは、累乗根の入った指数関数の導関数の求め方についてみていきましょう。 累乗根の入った関数~基本~ y= \sqrt[3]{x ^{2} }  について微分をしてみましょう。 解答... (全て読む)
16_80
Text_level_1
積の導関数の公式 2つの関数、f(x)とg(x)が微分可能であるとき、次の公式が成立しました。 {f(x)g(x)}’=f’(x)g(x)+f(x)g’(x) 積の導関数の公式です。今回はこれを... (全て読む)
16_80
Text_level_1
はじめに このテキストでは、微分法において最も重要な定理と言っても過言ではない平均値の定理をよりわかりやすく解説してみます。 平均値の定理 関数f=f(x)は、閉区間[a、b]で連続、開区間(a... (全て読む)
16_80
Text_level_1
グラフの平行移動 y=2x …① y=2(x-1)+3 …② ①と②のグラフの違いは何だったでしょうか? ②は、①のグラフをx軸方向に1、y軸方向に3だけ平行移動した放物線を描いたはずです。分数... (全て読む)
16_80
Text_level_1
はじめに このテキストでは、逆関数の単元の基礎である、「逆関数となは何か?」について説明をしていきます。 逆関数とは 関数y=x-1 があるとします。 …① この関数をxについて解いてみましょう... (全て読む)

1

2

3

4


知りたいことを検索!

 数学III
 平面上の曲線と複素数平面
   平面上の曲線/媒介変数など
   複素数平面
 数列とその極限
   数列の極限
   無限等比数列
   無限級数
 関数とその極限
   分数関数と無理関数
   合成関数と逆関数
   関数値の極限
 微分法
   微分係数と導関数
   関数の和・差・積・商の導関数
   合成関数の導関数
   三角関数・指数関数・対数関数の導関数
   高次導関数など
   微分法:接線と法線
   微分法:関数値の変化・最大最小
   微分法:関数のグラフ
   微分法:速度と加速度
   微分法:近似値
 積分法
   不定積分と定積分の基本性質
   置換積分法/部分積分法/区間求積法など
   積分の応用(面積/体積/曲線の長さ)
 その他
   その他