新規登録 ログイン
検索条件
科目 数学III
タグ

1

2

3

4

16_80
Text_level_1
公式 x^{n}の不定積分を求める公式は次の2つでした。 n \neq -1 のとき \int x^{n}dx=\frac{1}{n+1}x^{n+1}+C (※Cは定数) n=-1 のとき  ... (全て読む)
16_80
Text_level_1
無限級数の収束と発散 無限級数  \displaystyle \sum_{n=1}^{ \infty } a _{n}  において 無限級数が収束するということは、 \lim_{n \right... (全て読む)
16_80
Text_level_1
無限数列 項がどこまでも限りなく続く数列 a _{1} ,a _{2} ,a _{3} \cdots a _{n} のことを、無限数列と言います。数学Ⅲで扱う数列のことは、特にことわりが無い限り... (全て読む)
16_80
Text_level_1
グラフの平行移動 y=2x …① y=2(x-1)+3 …② ①と②のグラフの違いは何だったでしょうか? ②は、①のグラフをx軸方向に1、y軸方向に3だけ平行移動した放物線を描いたはずです。分数... (全て読む)
16_80
Text_level_1
はじめに ここでは、 \lim_{h \rightarrow 0} \frac{ \sin x}{x} =1  であることを用いて、(cos)'=-sinxの証明を行なってみましょう。 (cos... (全て読む)
16_80
Text_level_1
平面上を移動する点の速度と加速度 平面上を移動する点Aの、時刻tにおける座標を(x、y)とします。このとき点Aにおいて、 時刻tにおける速度  \vec{v}  その大きさを| \vec{v} ... (全て読む)
16_80
Text_level_1
合成関数を表す記号 関数f(x)とg(x)があります。f(x)とg(x)を合成した合成関数を表す記号が存在しますので、覚えておきましょう。 \left(g \circ f\right) \lef... (全て読む)
16_80
Text_level_1
逆関数 逆関数とは、y=f(x)という関数があったときに、これをx=g(y)の形に変形して、その上でxとyの値を入れ替えて出来る関数、y=g(x)のことを言います。 では実際に問題を通して、逆関... (全て読む)
16_80
Text_level_1
関数f(x)が閉区間[a、b]において連続で、開区間(a、b)において微分可能であるとします。このとき 開区間(a、b)においてつねにf’(x)>0ならば、f(x)は閉区間[a、b]で単調に増加... (全て読む)
16_80
Text_level_1
はじめに 数列の極限と同じように関数にもまた、極限という考え方が存在します。 まずは極限の収束についてみていきましょう。 極限への収束 関数f \left(x\right) =x ^{2}  に... (全て読む)

1

2

3

4


知りたいことを検索!

 数学III
 平面上の曲線と複素数平面
   平面上の曲線/媒介変数など
   複素数平面
 数列とその極限
   数列の極限
   無限等比数列
   無限級数
 関数とその極限
   分数関数と無理関数
   合成関数と逆関数
   関数値の極限
 微分法
   微分係数と導関数
   関数の和・差・積・商の導関数
   合成関数の導関数
   三角関数・指数関数・対数関数の導関数
   高次導関数など
   微分法:接線と法線
   微分法:関数値の変化・最大最小
   微分法:関数のグラフ
   微分法:速度と加速度
   微分法:近似値
 積分法
   不定積分と定積分の基本性質
   置換積分法/部分積分法/区間求積法など
   積分の応用(面積/体積/曲線の長さ)
 その他
   その他