新規登録 ログイン
検索条件
科目 数学III
タグ

1

2

3

4

5

16_80
Text_level_1
はじめに ここでは、 \lim_{h \rightarrow 0} \frac{ \sin x}{x} =1  であることを用いて、(cos)'=-sinxの証明を行なってみましょう。 (cos... (全て読む)
16_80
Text_level_1
無限等比数列 項がどこまでも限りなく続く数列のことを無限数列と言いました。 この無限数列の中でも、以下のような数列を無限等比数列と言います。 a,ar,ar ^{2} ar ^{3} \cdot... (全て読む)
16_80
Text_level_1
前回のおさらい ここまで2回にわたって、数列の「収束」と「発散」についてみてきました。今回が3回目です。 ここでは、収束にも発散にもあてはまらない数列について考えていきたいと思います。 振動 ま... (全て読む)
16_80
Text_level_1
分数関数 y= \frac{3}{x}  、y= \frac{3x+4}{x-2} のように、xについての分数式で表された関数のことをxの分数関数と言います。なんだか反比例の式みたいですね。 分... (全て読む)
16_80
Text_level_1
グラフの平行移動 y=2x …① y=2(x-1)+3 …② ①と②のグラフの違いは何だったでしょうか? ②は、①のグラフをx軸方向に1、y軸方向に3だけ平行移動した放物線を描いたはずです。分数... (全て読む)
16_80
Text_level_1
無理関数 y= \sqrt{x}  …① y= \sqrt{2x-1}  …② このように、yについて無理式で表された関数をxの無理関数と言います。ここでは無理関数のグラフの描き方について説明し... (全て読む)
16_80
Text_level_1
積の導関数の公式 2つの関数、f(x)とg(x)が微分可能であるとき、次の公式が成立しました。 {f(x)g(x)}’=f’(x)g(x)+f(x)g’(x) 積の導関数の公式です。今回はこれを... (全て読む)
16_80
Text_level_1
商の導関数の証明 2つの関数f(x)とg(x)が微分可能であるとき、次の公式が成り立ちました。 {f(x)÷g(x)}’={f’(x)g(x)-f(x)g’(x)}÷g(x)g(x) 商の導関数... (全て読む)
16_80
Text_level_1
はじめに ここでは、累乗根の入った指数関数の導関数の求め方についてみていきましょう。 累乗根の入った関数~基本~ y= \sqrt[3]{x ^{2} }  について微分をしてみましょう。 解答... (全て読む)
16_80
Text_level_1
第2次導関数とは 関数「y=f(x)」の導関数は、「y’=f’(x)」ですよね。 このy’=f’(x)がさらにxでの微分が可能であるとします。(つまり、一度微分して求めた導関数をさらに微分すると... (全て読む)

1

2

3

4

5


知りたいことを検索!

 数学III
 平面上の曲線と複素数平面
   平面上の曲線/媒介変数など
   複素数平面
 数列とその極限
   数列の極限
   無限等比数列
   無限級数
 関数とその極限
   分数関数と無理関数
   合成関数と逆関数
   関数値の極限
 微分法
   微分係数と導関数
   関数の和・差・積・商の導関数
   合成関数の導関数
   三角関数・指数関数・対数関数の導関数
   高次導関数など
   微分法:接線と法線
   微分法:関数値の変化・最大最小
   微分法:関数のグラフ
   微分法:速度と加速度
   微分法:近似値
 積分法
   不定積分と定積分の基本性質
   置換積分法/部分積分法/区間求積法など
   積分の応用(面積/体積/曲線の長さ)
 その他
   その他